228 research outputs found

    Overnight switch from ropinirole to transdermal rotigotine patch in patients with Parkinson disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent trial involving predominantly Caucasian subjects with Parkinson Disease (PD) showed switching overnight from an oral dopaminergic agonist to the rotigotine patch was well tolerated without loss of efficacy. However, no such data have been generated for Korean patients.</p> <p>Methods</p> <p>This open-label multicenter trial investigated PD patients whose symptoms were not satisfactorily controlled by ropinirole, at a total daily dose of 3 mg to 12 mg, taken as monotherapy or as an adjunct to levodopa. Switching treatment from oral ropinirole to transdermal rotigotine was carried out overnight, with a dosage ratio of 1.5:1. After a 28-day treatment period, the safety and tolerability of switching was evaluated. Due to the exploratory nature of this trial, the effects of rotigotine on motor and nonmotor symptoms of PD were analyzed in a descriptive manner.</p> <p>Results</p> <p>Of the 116 subjects who received at least one treatment, 99 (85%) completed the 28-day trial period. Dose adjustments were required for 11 subjects who completed the treatment period. A total of 76 treatment-emergent adverse events (AEs) occurred in 45 subjects. No subject experienced a serious AE. Thirteen subjects discontinued rotigotine prematurely due to AEs. Efficacy results suggested improvements in both motor and nonmotor symptoms and quality of life after switching. Fifty-two subjects (46%) agreed that they preferred using the patch over oral medications, while 31 (28%) disagreed.</p> <p>Conclusions</p> <p>Switching treatment overnight from oral ropinirole to transdermal rotigotine patch, using a dosage ratio of 1.5:1, was well tolerated in Korean patients with no loss of efficacy.</p> <p>Trial registration</p> <p>This trial is registered with the ClincalTrails.gov Registry (<a href="http://www.clinicaltrials.gov/ct2/show/NCT00593606">NCT00593606</a>).</p

    Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional non-linear feedback

    Get PDF
    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    The placebo effect and its determinants in fibromyalgia: meta-analysis of randomized controlled trials

    Get PDF
    The aims of this study were to determine whether placebo treatment in randomised controlled trials (RCTs) is effective for fibromyalgia and to identify possible determinants of the magnitude of any such placebo effect. A systematic literature search was undertaken for RCTs in people with fibromyalgia that included a placebo and/or a no-treatment (observation only or waiting list) control group. Placebo effect size (ES) for pain and other outcomes was measured as the improvement of each outcome from baseline divided by the standard deviation of the change from baseline. This effect was compared with changes in the no-treatment control groups. Meta-analysis was undertaken to combine data from different studies. Subgroup analysis was conducted to identify possible determinants of the placebo ES. A total of 3912 studies were identified from the literature search. After scrutiny, 229 trials met the inclusion criteria. Participants who received placebo in the RCTs experienced significantly better improvements in pain, fatigue, sleep quality, physical function, and other main outcomes than those receiving no treatment. The ES of placebo for pain relief was clinically moderate (0.53, 95%CI 0.48 to 0.57). The ES increased with increasing strength of the active treatment, increasing participant age and higher baseline pain severity, but decreased in RCTS with more women and with longer duration of fibromyalgia. In addition, placebo treatment in RCTs is effective in fibromyalgia. A number of factors (expected strength of treatment, age, gender, disease duration) appear to influence the magnitude of the placebo effect in this condition

    Development and Characterisation of Gastroretentive Solid Dosage Form Based on Melt Foaming

    Get PDF
    Dosage forms with increased gastric residence time are promising tools to increase bioavailability of drugs with narrow absorption window. Low-density floating formulations could avoid gastric emptying; therefore, sustained drug release can be achieved. Our aim was to develop a new technology to produce low-density floating formulations by melt foaming. Excipients were selected carefully, with the criteria of low gastric irritation, melting range below 70°C and well-known use in oral drug formulations. PEG 4000, Labrasol and stearic acid type 50 were used to create metronidazole dispersion which was foamed by air on atmospheric pressure using in-house developed apparatus at 53°C. Stearic acid was necessary to improve the foamability of the molten dispersion. Additionally, it reduced matrix erosion, thus prolonging drug dissolution and preserving hardness of the moulded foam. Labrasol as a liquid solubiliser can be used to increase drug release rate and drug solubility. Based on the SEM images, metronidazole in the molten foam remained in crystalline form. MicroCT scans with the electron microscopic images revealed that the foam has a closed-cell structure, where spherical voids have smooth inner wall, they are randomly dispersed, while adjacent voids often interconnected with each other. Drug release from all compositions followed Korsmeyer-Peppas kinetic model. Erosion of the matrix was the main mechanism of the release of metronidazole. Texture analysis confirmed that stearic acid plays a key role in preserving the integrity of the matrix during dissolution in acidic buffer. The technology creates low density and solid matrix system with micronsized air-filled voids

    Motivational modulation of bradykinesia in Parkinson's disease off and on dopaminergic medication.

    Get PDF
    Motivational influence on bradykinesia in Parkinson's disease may be observed in situations of emotional and physical stress, a phenomenon known as paradoxical kinesis. However, little is known about motivational modulation of movement speed beyond these extreme circumstances. In particular, it is not known if motivational factors affect movement speed by improving movement preparation/initiation or execution (or both) and how this effect relates to the patients' medication state. In the present study, we tested if provision of motivational incentive through monetary reward would speed-up movement initiation and/or execution in Parkinson's disease patients and if this effect depended on dopaminergic medication. We studied the effect of monetary incentive on simple reaction time in 11 Parkinson's disease patients both "off" and "on" dopaminergic medication and in 11 healthy participants. The simple reaction time task was performed across unrewarded and rewarded blocks. The initiation time and movement time were quantified separately. Anticipation errors and long responses were also recorded. The prospect of reward improved initiation times in Parkinson's disease patients both "off" and "on" dopaminergic medication, to a similar extent as in healthy participants. However, for "off" medication, this improvement was associated with increased frequency of anticipation errors, which were eliminated by dopamine replacement. Dopamine replacement had an additional, albeit small effect, on reward-related improvement of movement execution. Motivational strategies are helpful in overcoming bradykinesia in Parkinson's disease. Motivational factors may have a greater effect on bradykinesia when patients are "on" medication, as dopamine appears to be required for overcoming speed-accuracy trade-off and for improvement of movement execution. Thus, medication status should be an important consideration in movement rehabilitation programmes for patients with Parkinson's disease
    corecore